

Idaho National Engineering and Environmental Laboratory

Low Permeation Liner for H₂ Gas Storage Tanks

INEEL -- Dr. Paul A. Lessing

UCLA -- Prof. Y. Yang Dr. L.P. Ma F.C. Chen V. Shrotriya

Quantum Fuel Systems Tech. Worldwide -Dr. N. Sirosh
M.J. Warner

May 20,2003

Objective / Relevance

Project Objective

Greatly reduce hydrogen permeation through polymer tank liners of commercial, light-weight, composite, high-pressure hydrogen tanks.

Hydrogen Storage Relevance

Addresses On-board Storage Technical Barriers:

A. Cost B. Weight & Volume C. Durability I. Materials

Addresses Technical Targets:

1. System Cost 2. Cycle Life 3. Loss of useable hydrogen, and 4. Permeation and leakage.

Metric

Demonstrate measured reduction of hydrogen flux through polymer liner by a factor of 10 X as result of project.

"Conformable" Composite Tanks

Polymer Liners are Proposed for Composite H₂ Tanks

Examples: Nylon 6, XLPE (cross-linked polyethylene)

Polymer liner advantages

- Significant weight advantage over metal liner
- Lower cost for "conformable" (non-cylindrical) geometries via blow or roto molding
- Liner serves as a mandrel for winding composite wrap

Disadvantages

- High permeability (compared to CH₄) for stored hydrogen
- Loss of hydrogen & possible damage to structure
- Sealing boss to polymer liner
- Limited permeability data available

Approach

Create Hydrogen Diffusion Barrier for Polymer Tank-liners

Requirements for Barrier:

- Low permeability of hydrogen
- Adhere well to the polymer
- Modulus match to polymer to prevent cracking
- Apply coating inside a tank with narrow neck
- No pin-holes
- Low Cost and Low Weight

"Conformable" Composite Tanks

INEEL's Active Electrochemical Diffusion Barrier Approach

Electron-conductive polymer electrodes & proton-conductive electrolyte

$$\mathbf{E} = -\Delta \mathbf{G/nF} = \text{RT/nF} \{ \text{ln}[PH_2 \text{ (ref)} / PH_2 \text{ (sub)}] \}$$

The reaction of interest is:

$$H_2 \rightarrow 2 H^+ + 2 e^-$$

Therefore, n = 2, and for T = 300 K, and for a hydrogen pressure of 200 atm, and a postulated substrate partial pressure of hydrogen being $1x10^{-10}$ atm, the applied voltage (E) would be:

E = 0.366 volts

CA00 0062

First Year of New Project --- On Schedule

Milestones: Δ = to be accomplished, • = complete

FY03 MILESTONES	0	N	D	J	F	М	Α	М	J	J	Α	S
Subcontract with University signed 01/03				•								
CRADA with Quantum signed 01/03							•					
Task 1. Selection of Materials												
a. Electrode Candidate Polymers selected02/03					•							
b. Electrolyte Candidate Polymers selected 03/03						٠						
c. Catalyst Candidates selected 02/03					*							
Task 2. Fabrication of tri-layer coatings												
a. Experiment fabrication equipment installed 04/03							•					
b. Fabrication experiments begin05/03								•				
Task 3. Characterization of coating layers												
a. Determine characterization methods 06/03									Δ			
Task 4. Experiments Verification of												
hydrogenation protection												
a. Design of low pressure permeability device complete 02/03					•							
b. Fabrication of low pressure permeability device complete 06/03									Δ			
c. Initial design of high pressure permeability device complete 08/03											Δ	
Report 09/03												Δ

Accomplishments/Progress

- Filed U.S. Patent Application (# 10/253,265 in Sept. 2002)
- Negotiated and Signed Subcontract with UCLA (Prof. Yang's Conductive Polymers Group)
- Negotiated and Signed CRADA (No. 03-CR-07)
 with Quantum Fuel Systems Technologies
 Worldwide, Inc. a manufacturer of composite
 high- pressure gas storage tanks
- Fabrication of tri-layer polymer coatings and fabrication of permeability measurement apparatus are well under way (see following slides)

First set of candidate materials fabricated as prototype barrier

H-PEDOT **PAMPAS**

Glass substrate

H-PEDOT

Highly-conducting PEDOT (H-PEDOT) was made by blending PEDOT with meso-Erythriol

PEDOT

HC-CH₃ CH_2

The sulfonic group here will support the proton-conductivity

Poly(2-acrylamino-2-methyl-1-propanesulfonic acid-co-styrene) (PAMPAS)

Fabrication Procedures for the Prototype Barrier

- The glass substrate was first treated by UV-ozone for 15 mins. (for surface treatment.)
- H-PEDOT was spin coated onto the substrate.
- The substrate was baked at 150°C for 2 hours.
- After cooling, 2.5wt% PAMPAS was spin coated from toluene. (because PAMPAS is transparent, a red-dye, TPP, was added to probe survive of the film)
- The substrate was then baked at 70°C for 30 mins.

Substrates under UV light

H-PEDOT

PAMPAS

H-PEDOT

Glass substrate

Red-dye was add to allow the probe of PAMPAS polymer film by fluorescence.

High Contact Angle Problem

- Because PAMPAS contains 95% of styrene moieties, the film can survive after washing with water-based solvent. The washing effect due to coating of the second layer of PEDOT was minimized.
- However, the non-polar surface of PAMPAS resulted in the high contact angle while spincoating the second layer of PEDOT. The adhesion of PEDOT and PAMPAS was very poor.
- To avoid this problem, the PAMPAS film was subjected to a UV-ozone treatment to modify the surface property before spin coating the H-PEDOT layer. A good second layer of PEDOT was then obtained.

UV-Ozone Treatment Solves Contact Angle of PAMPAS Film

UV-Ozone Time (minutes)	Measured Contact Angle (degrees)					
0.0	90.5					
0.5	79.7					
1.0	70.5					
2.0	40.0					
5.0	20.0					
10.0	14.0					

PAMPAS Solution 2.0 wt.% in Toulene Spin Coating 1500 rpm Baking @ 70°C for 30 minutes

Contact Angle Measurement

Cam-March Contact Angle Measurement System

Droplet size: $6.0 \mu L$ Precision: ± 2 degrees

High Electronic Conductivity Demonstrated for PEDOT Electrode Layer

Designed a low pressure (≈100 psi) hydrogen permeability test

Fabricated the low pressure hydrogen permeability apparatus

Actual Apparatus

Bolts maintain chamber seal

Sample Holder with electrical connections

Initial High pressure (10,000 psi) Permeability Apparatus Design

Initial High Pressure Permeability Apparatus Design

Future work

- Measure Electrical Properties of Cell Layers. Example: Measure the current-voltage to determine the leakage current to confirm the quality of the film. (High leakage current may suggest the existing of some pin-holes or cracks of the film.)
- Optimize Electrolyte Layer. PAMPSA contains very few sulfonic groups, which may limit the proton conductivity. Instead of copolymer, a polymer blend system with different weight ratio of sulfonic groups and inert (insoluble in water) polymer moieties will be tested to yield both high proton conductivity and high-resistance of the washing effect from the second layer PEDOT.
- Permeability Testing. Complete evaluation of hydrogen sensors. Test permeability of baseline polymer materials versus same materials with tri-layer barrier coating. Evaluate effect of catalysts. Finish design and fabricate high-pressure permeability apparatus. Perform permeability tests on tanks with barrier.